
Routine Server-based Bulk Notice Generation
Notes on the Gory Details
Peter Corrigan, Head of Library Systems, National University of Ireland,
Galway.

Aleph’s multi-tiered printing architecture offers many wonderful opportunities for
customization and enhancement.
Here we describe elements of a custom Perl program which embeds an XSLT
processor and runs either on the Aleph server itself, or on a suitable alternative server-
type machine. The custom program utilizes the existing ExLibris supplied stylesheets
and is typically called by the system cron to process the routine bulk-
courtesy/overdue-notice XML source-files as found in the $data_print directory. Thus,
the custom program operates without any user intervention, uses tried and trusted
Unix technology, need not rely on any desktop or PC applications, and allows a high
degree of control over the message content, format and transport.

With Aleph 15 and later, the Notices-to-Patrons Services cir-10, cir-50, cir-51
and cir-52 are typically run from the Job Daemon and generate XML type output for
the production of Overdue Notices, Courtesy Reminders and similar bulk
correspondence. Typically, this output is transferred to a remote PC running the Task
Manager print daemon, where appropriate notices are produced by applying an XSLT
stylesheet to the source XML using the Saxon XSLT processor, as bundled with the
Aleph GUI. While the transformation of the raw notice-XML into a notice suitable for
printing or mailing normally takes place in the Aleph GUI, this capability can be
easily implemented on a variety of platforms using a modern scripting language like
Perl.

XSLT transformation using Perl and ExLibris’ stylesheets
If you have ever taken a peek at the output files created by Aleph’s cir-10, cir-50,
cir-51 or cir-52 services you’ll have noticed that the files are not strictly in XML
format. Rather, the output is a series of XML documents, all contained within a single
file, with each document delimited by a line composed of the string ## - XML_XSL
as illustrated in figure 1.
This is not well-formed XML, so we have a problem, because an essential
<z36-original-due-date>23/07/2003</z36-original-due-date>
<z36-process-status></z36-process-status>
<z36-loan-type></z36-loan-type>
<z36-proxy-id></z36-proxy-id>
<z36-recall-type></z36-recall-type>
</section-02>

</printout>
- XML_XSL
<?xml version="1.0"?>
<printout>
<form-name>loan-notice-letter</form-name>
<form-language>ENG</form-language>
<form-format>00</form-format>

Fig 1 Output created by Aleph services is not strictly in XML format.

The record delimiter, the
value of which we assign
to Perl’s input record
separator.

prerequisite to successful XSLT transformation is that the source be parsable using an
XML parser,

To overcome this we can utilize a common Perl idiom for parsing files of multiple
text records. We can make Perl’s input record separator, (the $/ variable), equal to our
notice data separator, i.e. the string ## - XML_XSL. Normally, $/ is the newline
character. When we alter it to be ## - XML_XSL Perl’s line input operator <>, will no
longer return a single line from the input file for each iteration. Instead, it returns all
the XML for a single notice as an ordinary Perl scalar variable, as we iterate over the
file within a while loop. We’ll discuss this in more detail with a practical example
later in our code walkthrough, below.
The upshot is that this approach gives us both valid XML, and a convenient way to
handle each discreet notice as a simple perl scalar. This technique is scalable and will
cope even if the Aleph services output contains many thousands of notices and is
hundreds of megabytes in size.

01 #!/usr/local/bin/perl
02 use warnings;
03 use strict;
04 use XML::LibXML;
05 use XML::LibXSLT;
06
07 my $parser = XML::LibXML->new();
08 my $xslt = XML::LibXSLT->new();
09 $parser->base_uri('./stylesheets');
10 my $style_doc = $parser->parse_file('./stylesheets/loan-notice.xsl');
11 my $stylesheet = $xslt->parse_stylesheet($style_doc);
12 while (defined ($_ = do { local $/ = "## - XML_XSL\n"; <> })) {
13 s/## - XML_XSL\s*//;
14 if (/<\?xml/) {
15 my $source = $parser->parse_string($_);
16 my $notice = $stylesheet->transform($source);
17 print $stylesheet->output_string($notice), " \f ";
18 }
19 }

Fig 2. Naïve bare-bones notice transformation – simple.pl

Fig 2 lists a complete, if naïve, script to transform an Aleph-services output file. If we
call it simple.pl we could invoke it thus:
simple.pl aleph-notice-file.dat >file-for-printing.prn
i.e. taking a notice file on standard input and piping output to a file, perhaps for later
printing.

simple.pl Walkthrough
On lines 1-3 we invoke perl, and use our usual warnings and strict pragmata to
restrict unsafe constructs and alert us to possible problems with our code. On lines 4
and 5 we import the XML::LibXML and XML::LibXSLT modules. On lines 7 and 8 we
construct an XML parser instance and stylesheet object. On line 9, we tell our parser
the base uri for our stylesheets (i.e. where all the Exlibris XSL include files are to be
found), allowing us keep things tidy by having our stylesheets in a separate directory
from our program.

We must set the base_uri for our parser instance when we use a stylesheet that
includes other stylesheets by using xsl:include or xsl:import elements with a
href attribute that is a relative URI. For example, the following is frequently
encountered in the ExLibris supplied stylesheets.

<xsl:include href="funcs.xsl"/>

Line 10 sees us parse the stylesheet as an XML::LibXML::Document object – in this
example we are using a hardcoded filename, but in real life we’d pick it up from the
the source document itself, the command line, or an ini file. (We’ll look at how we
might do that later).

On line 11 we take our style document source tree and create a stylesheet object. The
stylesheet object has a convenient transform method which does the actual
transformation. We’ll see that in action in a moment.
Line 12 is where our program starts getting interesting

while (defined ($_ = do { local $/ = "## - XML_XSL\n"; <> })) {

We are reading a file on standard input, where the normal input-record-separator is a
newline character. However, we want to make the string "## - XML_XSL\n" our
input-record-separator, and have this change confined to as small a part of our
program as possible, hence the do loop. If we were to allow the reassiged $/ to extend
in scope to the rest of the while loop, we would risk unintended consequences as
succeeding lines, or modules utilized in succeeding lines, will expect a \n as input-
record-separator. Hence, we localize the new value of $/ to the do block. On line 13
we remove the delimiter using a substitution regex where we replace the pattern ## -
XML_XSL\s* with nothing. On line 14 we just check that we are dealing with actual
XML using a simple regex, before we present it to the parser, otherwise our parser
will fail. On line 15 we parse our notice printout-XML (the current value of $_). On
line 16 we perform the actual transform using our stylesheet object’s transform
method. This returns a reference to another XML::LibXML::Document in the variable
$notice. On line 17 we print our notice to standard output with each notice
terminated by a formfeed character using the stylesheets’s output_string method.
We could just as easily have stored the output from stylesheet->output_string in
a scalar for further processing e.g.

my $notice_html = $stylesheet->output_string($notice)

with further processing conveniently invoked within our while loop, perhaps calling
one or more subroutines.

Extracting what we want with XPath
If you have been using XSLT, you know that an XPath expression consists of a
number of path steps. These extend a notional path, incrementally closer to a given
target node, akin to a filesystem path specifying the location of a file. The XPath steps
"walk" across the document tree to arrive at a node or set of nodes. In the same
manner as the XSLT stylesheets home-in on a piece of information within the XML
source, we can use the same technique within our program using Xpath expressions.
For example:

my $recipient = $source->findnodes("/printout/section-01/email-address");

or
my $issns = $source->findnodes("/printout/section-02/z13-isbn-issn");

The findnodes method returns a nodelist object in scalar contect or an array in list
context. A nodelist is just an ordered list of nodes, that conforms to the DOM
specification of a nodelist. It has its own set of methods like push, pop, shift etc.

Sending Mail
When it comes to sending mail from Perl, we have many options available to us. On a
Unix system we could simply pipe our output to sendmail e.g.

 open (MAIL, "| /usr/lib/sendmail -oi -t");

but there are lots of modules to choose from that make things safer, portable, more
reliable and facilitiate sending attachments or multipart mail: for example Mime::Lite,
Mail::Send, Mail::Sender, Mail::SendMail, and Mail::SendEasy. In NUI, Galway we
use Jenda Krynicky’s Mail::Sender module to send multi-part alternative mail with a
HTML and a text alternative. We could just as easily create a message with
attachments and inline images, but in our environment, HTML with a text alternative
works well.

We can create a Mail::Sender object thus:
…
 use Mail::Sender;
 my $sender = new Mail::Sender {
 smtp => '140.203.7.16',
 from => 'library@nuigalway.ie',
 on_errors=> undef,
 }
 or die "Can't create the Mail::Sender object:$Mail::Sender::Error\n";
…

Later we can utilise the Mail::Sender object within a generalized mail_send
subroutine. Line 8 below calls a mail_send routine with content and recipient email
address as parameters:

01 while (defined ($_ = do { local $/ = "## - XML_XSL\n"; <> })) {
02 s/## - XML_XSL\s*//;
03 if (/<\?xml/) {
04 my $source = $parser->parse_string($_);
05 my $recip=$source->findnodes("/printout/section-01/email-05 address");
06 my $html_notice = $html_stylesheet->transform($source);
07 my $plain_notice = $plain_stylesheet->transform($source);
08 mail_send ($stylesheet->output_string($html_notice),

$stylesheet->output_string($plain_notice),
$recipient);

09 }
10 }

Here we utilize our now familiar while loop as before, but this time we perform two
transformations – one to produce an HTML notice (line 6), and the other (line 7), to
produce a plain-text notice. On line 8 we call subroutine mail_send with the HTML

and text for a multipart-notice and the email address of the recipient. Subroutine
mail_send, contains three Perl statements and looks like this.

Despite being 32 lines-long, subroutine mail_send contains a mere two perl
statements. On line 2 we read the subroutine’s parameters into local variables for later
processing. The long statement on line 3 makes up the rest of the subroutine. It starts
by wrapping everything that follows within an eval block. A common Perl idiom, this
prevents fatal errors within the block terminating the program prematurely. With the
call to $sender->OpenMultipart on line 3, we invoke the Mail::Sender object,
(which we constructed earlier), and commence communication with the SMTP server.
On lines 4-8 we set the recipient for this particular message, the subject line, and the
character set. We also set the overall MIME subtype for the entire message as
multipart mixed. Lines 10-12 set up alternative-message number-one, a text-version

01 sub mail_send {
02 my ($html_body, $plain_body, $recipient_email_addr) = @_;
03 eval {$sender->OpenMultipart({
04 to => $recipient_email_addr,
05 subject => "Library notice",
06 encoding => 'quoted-printable',
07 charset => 'iso-8859-1',
08 multipart => 'mixed',
09 })
10 ->Part({ctype => 'multipart/alternative'})
11 ->Part({ctype => 'text/plain',
12 disposition=> 'NONE', msg => <<"*END*" })
13
14 $plain_body
15
16
17*END*
18 ->Part({ctype => 'text/html; charset= iso-8859-1',
19 disposition => 'NONE', msg => <<"*END*"})
20
21<!-—An optional HTML header -->
22 $html_header
23
24 $html_body
25
26
27<!— An optional html footer -->
28 $html_footer
29
30*END*
31 ->EndPart("multipart/alternative")
32
33
34 ->Close();
35 } or print "Error sending mail: $Mail::Sender::Error\n";
36}

Fig 3 Subroutine mail_send

We can place arbitrary content
into either version of the
message body using Perl
variable interpolation

of our multipart-alternative message. The ctype or Content-type is text/plain. This
version of the message will display if the mail agent does not understand HTML. The
disposition hash-key on line 12 relates to the Content-Disposition header which
provides a mechanism to tag each component of a message in order to communicate
to the Message User Agent e.g. MS Outlook, an indication of the component’s desired
presentation semantics and includes metadata describing attachment filename, size etc.
See RFC 2183 for more details. We choose ‘NONE’ for inline display of our message.

12 msg => <<"*END*" })
13
14 $plain_body
15
16
17*END*

Lines 12 to 17 above simply implement a HERE document, where anything placed
on lines 13-16 will form the text version of our message. We just choose to have our
transformed source interpolate via the $plain_body variable. The rest of the
subroutine simply repeats message creation for ctype text/html. In this case we have
the option to interpolate a HTML header and footer. We could additionally have a
MOTD (Message of the day), facility to communicate late-breaking information like
changes in opening hours, new exhibitions and so forth, by interpolating an
appropriate message.

Sending SMS Messages
Net::SMS is a Perl SMS Software Development Kit (SDK) providing high-level
control of the Simplewire wireless text-messaging platform, a commercially
supported product available from http://simplewire.com. Simplewire provide a
comprehensive SMS service including options to receive as well as transmit SMS
messages. The SDK was designed to be developer-friendly and it hides the intricacies
of the XML format required to communicate with the Simplewire WMP (Wireless
Message Protocol) servers.

sub make_SMS_notices {
 my $source = shift;
 my $style_doc = $parser->parse_file($opts{'s'});
 my $stylesheet = $xslt->parse_stylesheet($style_doc);
 my $msg = $stylesheet->transform($source);
 my $telephone = $source->findnodes("/printout/section-01/z302-telephone");

 if ($telephone =~ /(^085)|(^086)|(^087)/) {
 $telephone =~ s/[^\d]//;
 if ($telephone =~/^\d{10}$/) {
 $telephone =~ s/^0//;
 $telephone = "+353".$telephone;
 print SMSLOG "Sending to mobile $telephone\n";
 send_SMS($telephone,$stylesheet->output_string($msg));
 }
 }
}

sub send_SMS {
 my ($pin, $message) = @_;
 my $sms = Net::SMS->new();

 $sms->subscriberID("218-805-XXXY-712118");
 $sms->subscriberPassword("D72XXYZZA");

 # Message Settings
 $sms->msgPin($pin);
 $sms->msgFrom("Library, NUI Galway\n");
 $sms->msgCallback("+1 100 5551212");
 $sms->msgText($message);

 print "Sending message...\n";

 # Send Message
 $sms->msgSend();

 # Check For Errors
 if ($sms->success) {
 print SMSLOG "Message was sent!\n"; }
 else {
 print SMSLOG "Message was not sent!\n";
 print SMSLOG "Error Code: " . $sms->errorCode() . "\n";
 print SMSLOG "Error Description: " . $sms->errorDesc() ."\n";
 print SMSLOG "Error Resolution: " . $sms->errorResolution() ."\n";
 }

}

Fig 4 Sending SMS messages

Incorporating book cover-images and links into our notices

A novel enhancement to the existing notices setup is the inclusion of images of the
relevant book covers within the notice.

These images might serve to jog a users memory with respect to the items they have
on loan. When sent by email, the images provide an opportunity, in appropriate
circumstances, to make a hyperlink to a bookseller like Amazon. Alternatively, an
OpenURL link may be created, thus providing a route to an appropriate extended
service, available via a resolver. OpenURL’s are trivial to implement because we have
at our disposal the item’s metadata as provided by the Z13 Oracle table within the
notice XML, and all this conveniently addressable via XPATH expressions.

In the case of an Amazon hyperlink, the user is presented with an opportunity to
purchase the item, should they wish to do so. Where appropriate, this provides a
potential small revenue stream for the library using the Amazon Associates
programme.

To incorporate the images and links into the notices, we perform an in-memory edit of
the notice-XML parse tree, utilising the DOM (Document Object Model) API as
provided by the XML::LibXML module. We do this before XSLT transformation. In
Galway we chose to utilise the Z30-description node, already a component of our
notices, and therefore no changes to the existing XSLT were necessary. We populate
this element with an appropriate chunk of HTML, comprising a and img elements, to
make, in our case, a clickable image, with the Amazon details of the item as target,
and which incorporates the Library’s Amazon Associates ID within the URL . We
found that utilising the DOM was not intuitive from the developers perspective,
though preferable and more satisfying that using crude regular expressions to alter the

notice. The following code-snippet demonstrates using the DOM API to alter the
library notice XML.

01 my $XMLdom = $parser->parse_string($notice_xml);
02 my $root = $XMLdom->getDocumentElement;
03 my $z30descrips = $root->getElementsByTagName("z30-description");
04 my $z13isbns = $root->getElementsByTagName("z13-isbn-issn");
05 my $pos = 0;
07 foreach my $description ($descriptions->get_nodelist()) {
08 $pos++;
09 my $isbn =($z13isbns->get_node($pos))->firstChild;
10 my $cdata = make_lnk($description->firstChild,$isbn->data);
11 my $fragment= $parser->parse_xml_chunk($cdata);
12 $description->appendChild($fragment);
13 }

Fig 5. Using the DOM API to alter our notice XML

We parse the library-notice XML data and create the DOM object on line 1. Next, we
return the document element, the top-level element or root element in our XML
document on line 2. Using the getElementsByTagName DOM API method of our root,
we return a list of descendant elements with the z30-description and corresponding
z13-isbn-issn tags respectively in the variables $z30descripts and $z13isbns.
From line 7 to 13 we iterate over each z30-description element, acquiring the
corresponding ISBN for the current z30-description from the $z13isbns nodelist on
line 9, the actual ISBN being the childnode of the z13-isbn-issn node. On line 10,
we call our make_lnk subroutine with two parameters – the firstchild node of each
z30-description and the actual ISBN. See Fig y below for details of the make_lnk
subroutine.

01 sub make_lnk {
02 my ($description, $isbn) = @_;
03 $isbn ||= '9999999999';
04 $description = qq{\n
 <![CDATA[<A HREF =
 "http://myserver.edu/cgi-bin/go-pic?pic=$isbn">
 <IMG SRC="http://myserver.edu/cgi-bin/gen-pic?pic=$isbn"
 BORDER="0" alt="Click for details via Amazon"/>]]>\n
 };
05 return $description;
06 }

Fig 6 Importing the appropriate image and creating the link.

On line 2 we assign the parameters to the subroutine to two local variables,
$description and $isbn. On line 3 we populate local variable $isbn with a
dummy ISBN (999999999) if the ISBN has not been defined e.g. if the item in
question does not have an ISBN, or it is otherwise undefined.
On line 4 we compose the content for our link as a chunk of HTML within an XML
CDATA section and assign it to the local variable $description. The HTML chunk
comprises hyperlinks to two web services, go-pic and gen-pic, both implemented as
CGI scripts. The go-pic service takes an ISBN as a parameter and does a HTTP
redirect to the Amazon page for the item with the corresponding ISBN. The gen-pic
service is called by virtue of being the value of a SRC attribute within an IMG
element. It also takes an ISBN as a parameter. Accordingly, gen-pic is executed
when the HTML is rendered in the browser. The go-pic redirection service is only

executed if the user clicks on the image that is created from the execution of the gen-
pic service.

Areas for further investigation.

Bounce and Reply Management – bounced notices and user replies could
be forwarded to a bot which utililes takes action based on the content of the
message. Bounced emails could trigger a print notice for the user. Legitimate
replies by users could be forwarded to a human for response.

‘One Click’ Renewal – courtesy notices might include a renew button,
pointing to a script that perhaps utilizes the X-server API.
In this scenario, instead of exposing the X API to the user, we could have
some middleware that requires a password for each renew transaction,
perhaps implemented using the user’s PIN as a private key to encrypt the
query string received by this middleware. The user will not even be aware of
the password. The query string complete with password could be
precomputed and sent in the notice to the user to be invoked via the renew
button. The renew button would only appear if the item was renewable. We
could implement state for this button by making the image tag a link to
program e.g.

If the user opened the mail, say after the renewal period expired, the button
would not appear and be replaced by an invisible one pixel transparent gif or
a not renewable button.

